

Development of a capture method for silver nanoparticles from the aquatic environment

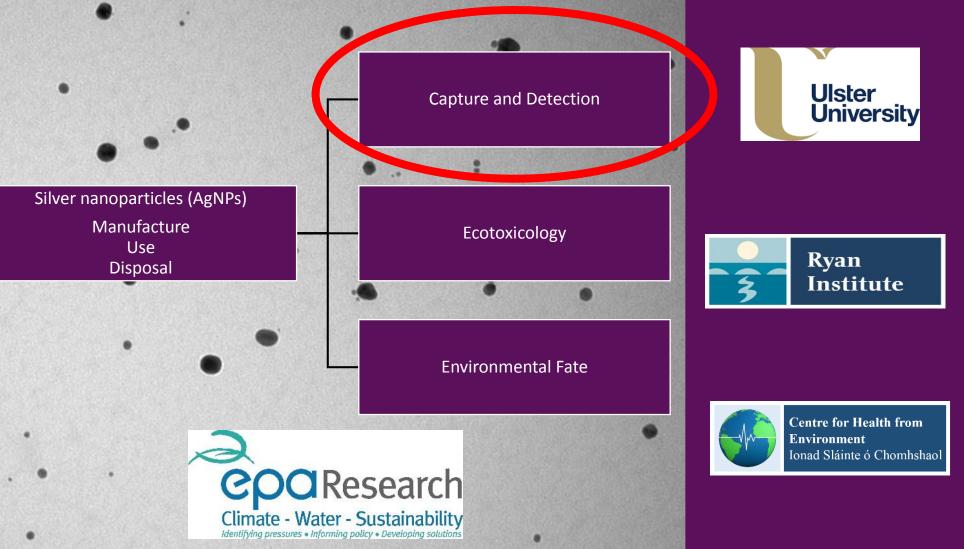
CResearch

Climate - Water - Sustainability

E. McGillicuddy ^{1, 2, 3}, L. Morrison ⁴, M. Cormican ^{2, 3}, D. Morris ^{2, 3}

 ^{1.} School of Chemical and Pharmaceutical Sciences, Dublin Institute of Technology, Dublin
^{2.}Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway
^{3.} Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway

^{4.} Earth and Ocean Sciences, National University of Ireland, Galway


Deter

Detection, Toxicology, Environmental fate and Risk assessment of nanoparticles in the aquatic environment

Talk in a bullet point

The development of a technique to successfully capture AgNPs from aqueous samples using activated charcoal as the capture material

Contents lists available at ScienceDirect

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Review

Silver nanoparticles in the environment: Sources, detection and ecotoxicology

E. McGillicuddy ^{a,b,*}, I. Murray ^c, S. Kavanagh ^{a,b,1}, L. Morrison ^d, A. Fogarty ^{c,e}, M. Cormican ^{a,b}, P. Dockery ^f, M. Prendergast ^b, N. Rowan ^{c,e}, D. Morris ^{a,b}

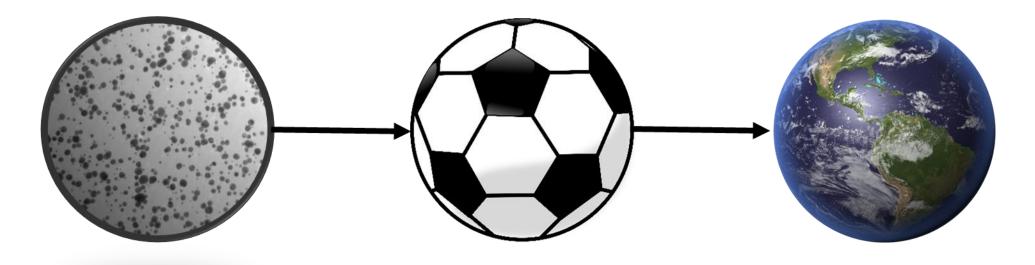
^a Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland

^b Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland

^c Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland

^d Earth and Ocean Sciences, National University of Ireland Galway, Galway, Ireland

e Department of Life & Physical Science, Athlone Institute of Technology, Dublin Road, Athlone, Co. Westmeath, Ireland


f Discipline of Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland

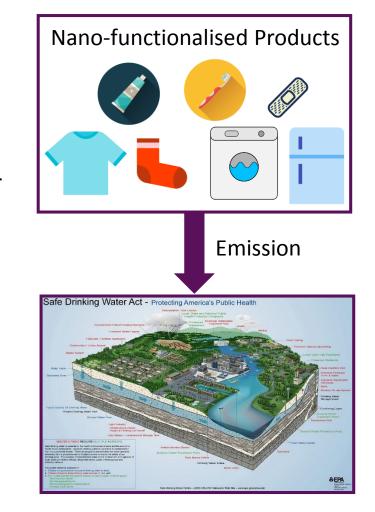
McGillicuddy, E., Murray, I., Kavanagh, S., Morrison, L., Fogarty, A, Cormican, M., Dockery, P., Prendergast, M., Rowan, N., Morris, D. 2017. Silver nanoparticles in the environment: Sources, detection and ecotoxicology. *Science of the Total Environment*. 575, 231-246.

What are nanoparticles

 Nanoparticle (NP): A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50 % or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm - 100 nm (2011/696/EU)

1 nm = 0.00000001 m

Silver nanoparticles


Nanosilver has been observed to have antibacterial properties

AgNP: Environmental release

- AgNPs in consumer products pose a potential risk to the environment and human health
- Numerous studies have demonstrated the release of Ag from Agfunctionalized commercial products including;
 - Functionalized textiles and fabrics
 - Medical devices
 - Paint
 - Washing machine
 - Toothbrushes
 - Food packaging
- The released Ag can potentially enter the aquatic system

AgNP: Environmental impacts

Particle Type

Particle Morphology

Particle Size Particle Characteristics Influencing Fate in the Aqueous Environment

Particle Concentration

Particle Surface Properties

lonic strength

- Particles may aggregate/agglomerate, dissolve or associate with ligands present in the water, adsorb onto particulate matter in the water and/or sediment
- The ultimate fate of AgNPs in the environment will influence the bioavailability of the particles to organisms e.g. AgS compounds are insoluble and therefore may be less bioavailable

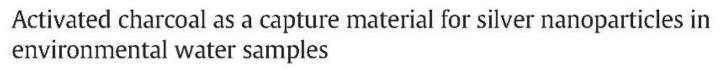
AgNP: Environmental Uncertainties

- Currently there is a lack of:
 - monitoring and detection data
 - agreed methodologies for AgNP monitoring

 To date the majority of studies on AgNP concentrations in environmental waters rely on modelling data

• It is estimated that AgNP concentration in the aquatic environment are in the ng L⁻¹ range

AgNP: Measurement


- No standard methods in place for the measurement of AgNPs in the aquatic environment
- Difficulties in measurement are associated with:
 - the reactions AgNPs can undergo in the environment
 - background Ag concentrations in the environment
 - difficulty in discriminating particulate and ionic silver
- The initial form that silver may enter the environment is not necessarily the form that it will be detected as in the environment
- Suitable methods to concentrate and quantify AgNPs in aquatic samples need to be developed

Contents lists available at ScienceDirect

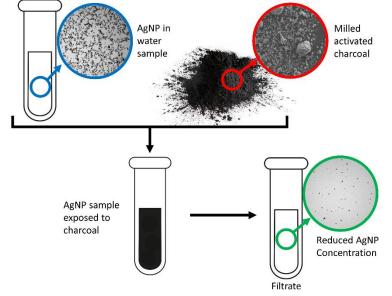
Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

E. McGillicuddy ^{a,b,*}, L. Morrison ^{b,c}, M. Cormican ^{a,b}, P. Dockery ^d, D. Morris ^{a,b}

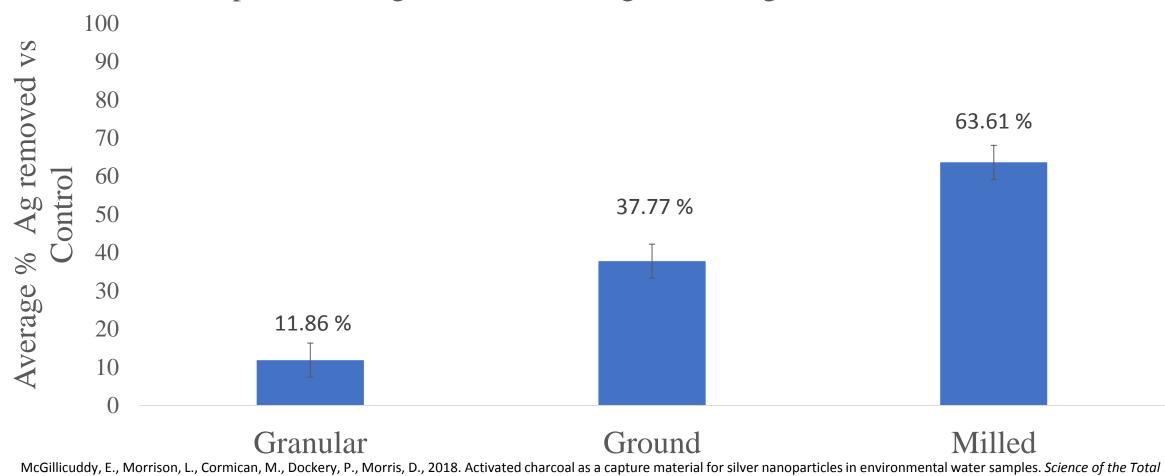
* Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland Galway, Galway, Ireland

^b Centre for Health from Environment, Ryan Institute, National University of Ireland Galway, Galway, Ireland

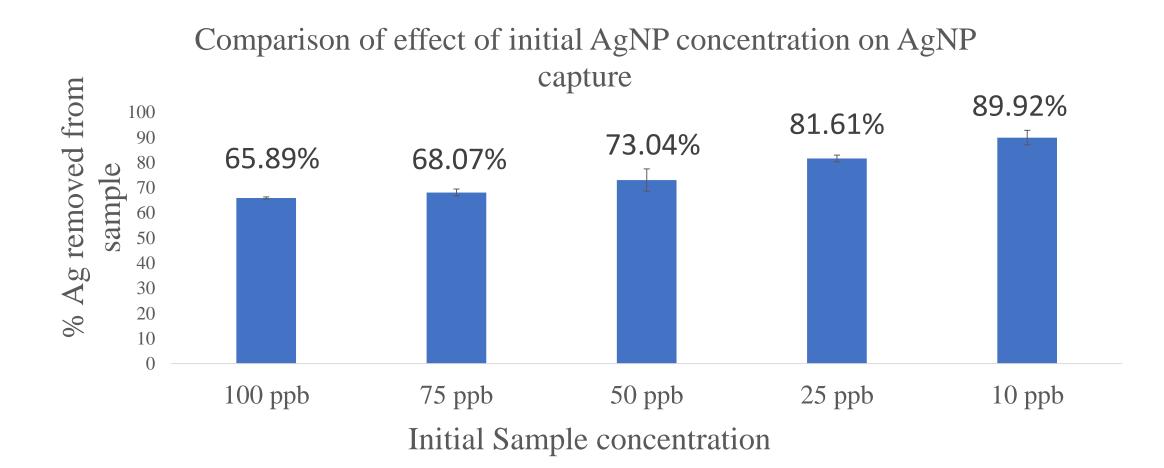

^c Earth and Ocean Sciences, School of Natural Sciences, National University of Ireland, Galway, Ireland

^d Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland

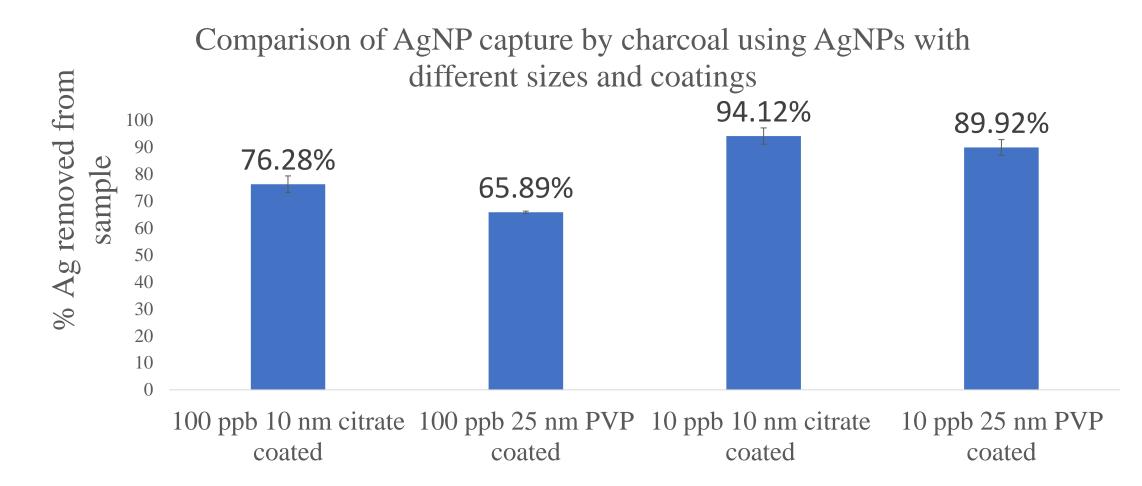
McGillicuddy, E., Morrison, L., Cormican, M., Dockery, P., Morris, D., 2018. Activated charcoal as a capture material for silver nanoparticles in environmental water samples. *Science of the Total Environment* 645, 356–362.


Charcoal as a capture material

- Charcoal is a commonly used material in water purification where it is used as an adsorbant
- Previous study successfully used charcoal as an adsorbant for 60 nm citrate coated nanoparticles (Gicheva and Yordanov, 2013)
 - This study added electrolytes in order to improve AgNP removal
- Charcoal used for out study was Norit CA1 activated charcoal which is used in water purification


Charcoal Grade Comparison

Comparison of AgNP removal using different grades of charcoal


Environment 645, 356–362.

Concentration Variation

McGillicuddy, E., Morrison, L., Cormican, M., Dockery, P., Morris, D., 2018. Activated charcoal as a capture material for silver nanoparticles in environmental water samples. *Science of the Total Environment* 645, 356–362.

Size/Coating effect

McGillicuddy, E., Morrison, L., Cormican, M., Dockery, P., Morris, D., 2018. Activated charcoal as a capture material for silver nanoparticles in environmental water samples. *Science of the Total Environment* 645, 356–362.

Removal of AgNP from Charcoal (HCl)

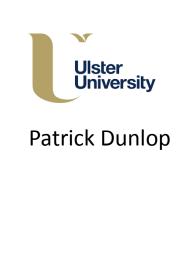
- Samples of charcoal filtered from sample and freeze dried
- 0.1 g of dried sample weighed out and added to 2 ml of 30 % HCl
- Samples shaken for 48 hours at 200 rpm
- Samples filtered to remove charcoal
- Filtrate diluted to 1% HNO_3 and analysed using ICPMS to determine the AgNP removal from the charcoal
- The HCl extraction recovered an average of 94.83% of the Ag captured (std. dev. = 5.51) varying from 86.67% to 101.93%

AgNP: Conclusions

- Inventories of AgNP containing products at national and international levels should be developed
- AgNPs likely to be emitted into the environment however, levels are difficult to determine as they are present at low concentrations
- Suitable methods must be developed to successfully remove AgNPs (and possibly other nanowastes) from environmental waters
- Charcoal (commonly used in water purification) shows some promise as a nanoparticle capture material
- Increasing surface area of the charcoal increases the capture of AgNPs from the sample

http://www.nuigalway.ie/medicine-nursing-and-health-sciences/medicine/ disciplines/bacteriology/research/deter/

Dearbháile Morris Eoin McGillicuddy Liam Morrison Martina Prendergast Peter Dockery


Martin Cormican

Iain Murray Siobhan Kavanagh Andrew Fogarty

Enda Cummins David Shevlin

